MATH 521A: Abstract Algebra Exam 3 Solutions

1. Factor $f(x) = x^4 + 3x^3 - x^2 + 3x + 1$ into irreducibles in $\mathbb{Z}_5[x]$.

We first look for any linear factors, by computing f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 3, f(-1) = 0. Hence (x + 1) is a (possibly multiple) factor of f(x). We now calculate $f(x) = (x+1)(x^3+2x^2+2x+1)$. It turns out that -1 is a root of x^3+2x^2+2x+1 , so we divide again to get $f(x) = (x+1)^2(x^2+x+1)$. Now -1 is not a root of x^2+x+1 ; hence $x^2 + x + 1$ has no roots. Since it is of degree 2, it is irreducible and we are done.

2. Prove that $f(x) = x^3 + 9x^2 + 8x + 96301$ is irreducible in $\mathbb{Q}[x]$.

Eisenstein's criterion is not appealing, as 96301 is hard to factor (it equals $23 \cdot 53 \cdot 79$, so to use Eisenstein we would need to test 16 values).

By Gauss' Lemma, f(x) is irreducible in $\mathbb{Q}[x]$ if it is irreducible in $\mathbb{Z}[x]$. By homework 8 problem 6, f(x) is irreducible in $\mathbb{Z}[x]$ if it is irreducible in $\mathbb{Z}_3[x]$. Working in \mathbb{Z}_3 , we have $f(x) = x^3 + 2x + 1$. We check f(0) = 1, f(1) = 1, f(-1) = 1. Hence f(x) has no linear factors over \mathbb{Z}_3 , but since it is of degree 3 it is irreducible.

3. Let R be an integral domain. Prove that all linear polynomials in R[x] are irreducible, if and only if R is a field.

Let f(x) = ax + b, for $a, b \in R$. If f(x) = g(x)h(x), then (since R is an integral domain), one of g, h must be of degree 0. If R is a field, this is a unit, so f(x) is irreducible. On the other hand, if R is not a field, there is some $c \in R$ that is not zero and not a unit. We take f(x) = cx + c = c(x + 1), a factorization into two nonunits. Hence f(x) is reducible.

4. Set $f(x) = x^4 + 3x^3 - x^2 + x - 1$, $g(x) = 2x^5 + 3x^4 + 3x^2 + 2x - 1$, both in $\mathbb{Z}_5[x]$. Use the extended Euclidean algorithm to find gcd(f,g) and to find polynomials a(x), b(x) such that gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

$$2x^{5} + 3x^{4} + 3x^{2} + 2x - 1 = (2x + 2)(x^{4} + 3x^{3} - x^{2} + x - 1) + (x^{3} + 3x^{2} + 2x + 1)$$

$$x^{4} + 3x^{3} - x^{2} + x - 1 = (x)(x^{3} + 3x^{2} + 2x + 1) + (2x^{2} - 1)$$

$$x^{3} + 3x^{2} + 2x + 1 = (3x - 1)(2x^{2} - 1) + 0$$

Hence $\gcd(f,g)$ is the monic multiple of $2x^2 - 1$, which is $3(2x^2 - 1) = x^2 + 2$. We now back-substitute, as $2x^2 - 1 = (x^4 + 3x^3 - x^2 + x - 1) - x(x^3 + 3x^2 + 2x + 1) = (x^4 + 3x^3 - x^2 + x - 1) - x(2x^5 + 3x^4 + 3x^2 + 2x - 1 - (2x + 2)(x^4 + 3x^3 - x^2 + x - 1)) = (x^4 + 3x^3 - x^2 + x - 1)(1 + x(2x + 2)) + (2x^5 + 3x^4 + 3x^2 + 2x - 1)(-x)$. We multiply both sides by the unit 3, to get $x^2 + 2 = (x^4 + 3x^3 - x^2 + x - 1)3(1 + x(2x + 2)) + (2x^5 + 3x^4 + 3x^2 + 2x - 1)3(1 - x)$. Hence $a(x) = x^2 + x + 3$, b(x) = 2x.

5. Set $f(x) = x^n - x^{n-1} \in F[x]$. Carefully find all divisors of f(x) in F[x]. We factor f(x) into irreducibles as $f(x) = (x - 1)x^{n-1}$. Because F[x] has unique factorization, every divisor of f(x) must be of the form $u(x - 1)^i x^j$, where u is a unit (i.e. any nonzero element of F), i satisfies $0 \le i \le 1$, and j satisfies $0 \le j \le n - 1$. 6. Let $f(x), g(x), h(x) \in F[x]$. Suppose that f(x)|g(x)h(x) and gcd(f(x), g(x)) = 1. Prove that f(x)|h(x).

We use the extended Euclidean algorithm to find $a(x), b(x) \in F[x]$ such that $1 = \gcd(f,g) = a(x)f(x)+b(x)g(x)$. Multiply both sides by h(x) to get h(x) = a(x)f(x)h(x)+b(x)g(x)h(x). Because f(x)|g(x)h(x), there is some $c(x) \in F[x]$ such that g(x)h(x) = f(x)c(x). Substituting, we get h(x) = a(x)f(x)h(x) + b(x)f(x)c(x) = f(x)[a(x)h(x) + b(x)c(x)]. Hence f(x)|h(x).

7. Let p be an odd prime. Prove there is at least one $a \in \mathbb{Z}_p$ such that $x^2 - a$ is irreducible in $\mathbb{Z}_p[x]$.

Consider the function $f : \mathbb{Z}_p \to \mathbb{Z}_p$ given by $f : x \mapsto x^2$. Note that f(1) = f(-1) = 1, so it is not injective $(1 \neq -1 \text{ in } \mathbb{Z}_p \text{ for odd } p)$. Since its domain is the same as its codomain, and is finite, f is also not surjective. Hence there is some $a \in \mathbb{Z}_p$ not in the range of f. Take that for our a. Now, $x^2 - a$ will have no roots, since if b were a root then $f(b) = b^2 = a$ (which is impossible). Since $x^2 - a$ is quadratic polynomial with no roots, it is irreducible.

8. We call a polynomial in F[x] cinom if its constant coefficient is 1. Suppose that f(x) is a nonconstant, cinom, polynomial in F[x]. Prove that we may write f(x) as the product of irreducible cinom polynomials.

By Theorem 4.14, we may write $f(x) = f_1(x) \cdots f_k(x)$, the product of irreducible polynomials. The proof proceeds via induction on k. If k = 1 then f(x) is itself irreducible and cinom, so it is the product of one irreducible cinom polynomial. Otherwise we write $f(x) = f_1(x)g(x)$, where $g(x) = f_2(x) \cdots f_k(x)$. Suppose that $f_1(x)$ has constant coefficient a, while g(x) has constant coefficient b. Since f(x) is cinom, we know that ab = 1. Hence we can write $f(x) = (bf_1(x))(ag(x))$. Now, $bf_1(x)$ has constant coefficient ba = 1, while ag(x) has constant coefficient ab = 1. So both factors are cinom. Since $f_1(x)$ was irreducible, so is $bf_1(x)$. Since ag(x) is cinom, nonconstant, and of degree smaller than f(x), we may apply the inductive hypothesis to write ag(x) as the product of irreducible cinom polynomials.