
MATH 521A: Abstract Algebra
Exam 3 Solutions

1. Factor f(x) = x4 + 3x3 − x2 + 3x + 1 into irreducibles in Z5[x].

We first look for any linear factors, by computing f(0) = 1, f(1) = 2, f(2) = 3, f(3) =
3, f(−1) = 0. Hence (x + 1) is a (possibly multiple) factor of f(x). We now calculate
f(x) = (x+1)(x3 +2x2 +2x+1). It turns out that −1 is a root of x3 +2x2 +2x+1, so
we divide again to get f(x) = (x+ 1)2(x2 + x+ 1). Now −1 is not a root of x2 + x+ 1;
hence x2 + x+ 1 has no roots. Since it is of degree 2, it is irreducible and we are done.

2. Prove that f(x) = x3 + 9x2 + 8x + 96301 is irreducible in Q[x].

Eisenstein’s criterion is not appealing, as 96301 is hard to factor (it equals 23 · 53 · 79,
so to use Eisenstein we would need to test 16 values).

By Gauss’ Lemma, f(x) is irreducible in Q[x] if it is irreducible in Z[x]. By homework
8 problem 6, f(x) is irreducible in Z[x] if it is irreducible in Z3[x]. Working in Z3, we
have f(x) = x3 + 2x + 1. We check f(0) = 1, f(1) = 1, f(−1) = 1. Hence f(x) has no
linear factors over Z3, but since it is of degree 3 it is irreducible.

3. Let R be an integral domain. Prove that all linear polynomials in R[x] are irreducible,
if and only if R is a field.

Let f(x) = ax + b, for a, b ∈ R. If f(x) = g(x)h(x), then (since R is an integral
domain), one of g, h must be of degree 0. If R is a field, this is a unit, so f(x) is
irreducible. On the other hand, if R is not a field, there is some c ∈ R that is not zero
and not a unit. We take f(x) = cx + c = c(x + 1), a factorization into two nonunits.
Hence f(x) is reducible.

4. Set f(x) = x4 + 3x3 − x2 + x− 1, g(x) = 2x5 + 3x4 + 3x2 + 2x− 1, both in Z5[x]. Use
the extended Euclidean algorithm to find gcd(f, g) and to find polynomials a(x), b(x)
such that gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

2x5 + 3x4 + 3x2 + 2x− 1 = (2x + 2)(x4 + 3x3 − x2 + x− 1) + (x3 + 3x2 + 2x + 1)

x4 + 3x3 − x2 + x− 1 = (x)(x3 + 3x2 + 2x + 1) + (2x2 − 1)

x3 + 3x2 + 2x + 1 = (3x− 1)(2x2 − 1) + 0

Hence gcd(f, g) is the monic multiple of 2x2− 1, which is 3(2x2− 1) = x2 + 2. We now
back-substitute, as 2x2−1 = (x4+3x3−x2+x−1)−x(x3+3x2+2x+1) = (x4+3x3−
x2+x−1)−x(2x5+3x4+3x2+2x−1−(2x+2)(x4+3x3−x2+x−1)) = (x4+3x3−x2+
x−1)(1+x(2x+2))+(2x5+3x4+3x2+2x−1)(−x). We multiply both sides by the unit
3, to get x2+2 = (x4+3x3−x2+x−1)3(1+x(2x+2))+(2x5+3x4+3x2+2x−1)3(−x).
Hence a(x) = x2 + x + 3, b(x) = 2x.

5. Set f(x) = xn − xn−1 ∈ F [x]. Carefully find all divisors of f(x) in F [x].

We factor f(x) into irreducibles as f(x) = (x− 1)xn−1. Because F [x] has unique fac-
torization, every divisor of f(x) must be of the form u(x− 1)ixj, where u is a unit (i.e.
any nonzero element of F ), i satisfies 0 ≤ i ≤ 1, and j satisfies 0 ≤ j ≤ n− 1.



6. Let f(x), g(x), h(x) ∈ F [x]. Suppose that f(x)|g(x)h(x) and gcd(f(x), g(x)) = 1.
Prove that f(x)|h(x).

We use the extended Euclidean algorithm to find a(x), b(x) ∈ F [x] such that 1 =
gcd(f, g) = a(x)f(x)+b(x)g(x). Multiply both sides by h(x) to get h(x) = a(x)f(x)h(x)+
b(x)g(x)h(x). Because f(x)|g(x)h(x), there is some c(x) ∈ F [x] such that g(x)h(x) =
f(x)c(x). Substituting, we get h(x) = a(x)f(x)h(x) + b(x)f(x)c(x) = f(x)[a(x)h(x) +
b(x)c(x)]. Hence f(x)|h(x).

7. Let p be an odd prime. Prove there is at least one a ∈ Zp such that x2−a is irreducible
in Zp[x].

Consider the function f : Zp → Zp given by f : x 7→ x2. Note that f(1) = f(−1) = 1,
so it is not injective (1 6= −1 in Zp for odd p). Since its domain is the same as its
codomain, and is finite, f is also not surjective. Hence there is some a ∈ Zp not in the
range of f . Take that for our a. Now, x2 − a will have no roots, since if b were a root
then f(b) = b2 = a (which is impossible). Since x2 − a is quadratic polynomial with
no roots, it is irreducible.

8. We call a polynomial in F [x] cinom if its constant coefficient is 1. Suppose that f(x)
is a nonconstant, cinom, polynomial in F [x]. Prove that we may write f(x) as the
product of irreducible cinom polynomials.

By Theorem 4.14, we may write f(x) = f1(x) · · · fk(x), the product of irreducible poly-
nomials. The proof proceeds via induction on k. If k = 1 then f(x) is itself irreducible
and cinom, so it is the product of one irreducible cinom polynomial. Otherwise we
write f(x) = f1(x)g(x), where g(x) = f2(x) · · · fk(x). Suppose that f1(x) has constant
coefficient a, while g(x) has constant coefficient b. Since f(x) is cinom, we know that
ab = 1. Hence we can write f(x) = (bf1(x))(ag(x)). Now, bf1(x) has constant coeffi-
cient ba = 1, while ag(x) has constant coefficient ab = 1. So both factors are cinom.
Since f1(x) was irreducible, so is bf1(x). Since ag(x) is cinom, nonconstant, and of
degree smaller than f(x), we may apply the inductive hypothesis to write ag(x) as the
product of irreducible cinom polynomials.


